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Abstract

Physics-Informed Neural Networks (PINNs) have emerged as a deep learning framework for solving partial differen-
tial equations (PDEs). However, standard approaches often struggle to strictly enforce boundary conditions, limiting
their computational accuracy, especially in complex multiphysics coupled systems. To address this challenge, we
introduce Boundary Region Reinforcement Physics-Informed Neural Networks (BRR-PINNSs), a novel framework
designed to strengthen boundary constraint enforcement and significantly improve solution accuracy. We validate
the effectiveness of BRR-PINNs on a two-dimensional axisymmetric thermo-elastic coupling problem, involving a
circular ring subjected to both thermal and mechanical loads. Experimental results show that our method consistently
outperforms several existing approaches, achieving approximately one order of magnitude improvement in accuracy.

Keywords: Partial differential equations, Physics-Informed Neural Networks, Boundary Region Reinforcement,
Computational accuracy, Al for science, Thermo-elastic coupling system

1. Introduction

With the continuous advancement of deep learning, its extensive applications in areas such as image recognition,
semantic understanding, and autonomous driving rely largely on models trained with vast amounts of data. However,
in fields such as engineering applications, there are some research problems in which obtaining a large amount of
data is infeasible or prohibitively costly. Raissi et al. [1] proposed Physics-Informed Neural Networks (PINNs),
which integrate the physical laws and experimental data into the loss function of the neural network. The entire
training process involves minimizing the loss function, ensuring that the resulting model satisfies the given equations
and conditions. The advantage is that it requires a small amount of, or even no, labeled experimental data to obtain
solutions to partial differential equations (PDEs), due to the incorporation of physical laws into the network. The
core of PINNs computational capability lies in automatic differentiation (AD) [2], which enables it to incorporate
physical equations into the loss function. AD can be conveniently accessed in commonly used frameworks such as
PyTorch and TensorFlow. Raissi et al. [1]] proposed two types of problem: the data-driven solution and the data-
driven discovery of partial differential equations. They validated the effectiveness of the PINNs method on equations
involving the Schrodinger equation, Allen-Cahn equation, and Navier-Stokes equations. Since it has been proposed,
PINNSs have been applied in various fields, including heat transfer [3} 4] chemical kinetics [5, 6], fluid dynamics [[7, (3],
solid mechanics [9} [10} [11]], systems biology [12]], geophysics [13] etc.

After the proposal of PINNs, various variants have been proposed to enhance the model performance and extend
its application to different problems. These include B-PINNs [14], based on a Bayesian framework to mitigate over
fitting and achieve higher prediction accuracy in noisy data; CAN-PINN [15], which couple AD with numerical dif-
ferentiation (ND) to obtain greater robustness and efficiency; g-PINNs [16]], a gradient-enhanced method, improves
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the smoothness of the obtained solution by adding derivative terms to the loss function, thus enhancing the precision;
cPINN [l17]], designed to solve nonlinear conservation laws in discrete domains, can efficiently lend itself to paral-
lelized computation, etc. The exploration of the computational accuracy, efficiency, and application fields of PINNs
is still ongoing.

In traditional finite element methods (FEM), boundary conditions can be exactly imposed at mesh points. How-
ever, for mesh-free methods, including PINNs, mesh-free Galerkin methods [18]], etc., satisfying boundary conditions
is a well-known and pertinent issue [19]]. Many studies have shown that errors in boundary conditions significantly af-
fect the convergence and accuracy of the overall solution [20} 21} 22]]. Without proper boundary condition constraints,
PDEs may have infinitely many solutions; moreover, in some PDEs, such as elliptic partial differential equations,
boundary errors can propagate throughout the entire solution domain at an infinite speed [23]. Several efforts have
been made to reach a penalty-free, boundary exactly imposed method [[19, 21} 124} 25126, [27]. Rao et al. [24] proposed
a "hard" manner to satisfy initial/boundary conditions (I/BCs), including training three DNNs: I/BCs DNN, Distance
function DNN, and General DNN. Sukumar et al. [19] achieved by constructing approximation distance functions
(ADFs) derived from R-functions [28]], in order to obtain the geometry-trail function for boundary conditions involv-
ing Dirichlet, Neumann, and Robin boundary. This type of hard constraint method can obtain more accurate results
and has been used to impose boundary conditions, particularly Dirichlet boundaries, in numerous studies [29} 130, 31].
For some specific problems, e.g. beam problems, deep ROLS [32] is proposed with a BCs embedding method, which
efficiently embeds the high order BCs based on the "hard" method.

Currently, PINNs method is used in some multi-physics problems, such as thermo-elastic deformation [331[34}[35]],
thermo-fluid flows [36} 137, 38]], electro-thermal coupling [39,40]], thermo-chemical problems [41} 42], etc. However,
in such coupled systems, the governing PDEs typically involve a larger number of equations and coupling terms,
resulting in more loss components and additional hyperparameters that must be manually tuned. Training PINNs on
these systems is particularly challenging due to the complexity of the loss function, the high-frequency components,
and the multiscale features of the underlying physics [43} 44,45 46]]. Wang et al. [20] attributed this failure to multi-
scale interactions that induce stiffness in the gradient flow, preventing the optimization process. They further analyzed
the training dynamics of PINNs through the lens of the Neural Tangent Kernel (NTK) [47], revealing that different
loss components converge at remarkable disparate rates. The “hard” method mentioned earlier may help reduce the
number of loss terms; however, it mainly acts on Dirichlet boundary conditions and has limited influence on the in-
herent difficulties of multi-physics systems. To address these issues, several variational energy-based formulations
have been proposed to reduce both the number and the order of governing equations [31} 148]]. Other approaches, in-
cluding mixed formulation PINNs [49] [33]], alternate two-stage PINNs (ATPINN) [50], and gradient-enhanced PINNs
(g-PINNs) [51], have been developed to improve the accuracy and stability of PINNs when predicting coupled phys-
ical fields. In addition, various training strategies, including adaptive learning [52| 20, |47]], have been introduced to
mitigate the imbalance arising from multiscale features during optimization. Nevertheless, the fundamental reasons
for the failure of PINNs and the development of efficient, generalizable solutions remain understudied. We present a
simple but effective idea, attributing the failure of PINN s to the incomplete satisfaction of boundary conditions, which
may cause the governing system to admit multiple or even infinitely many solutions. Based on this observation, we
propose a generalized framework capable of delivering precise predictions, even for complex multiphysics coupled
problems.

The popularity of the PINNs method has been steadily increasing in recent years, however, challenges such as
computational accuracy and speed still need to be addressed. This paper proposes a novel algorithm, BRR-PINNS,
aimed at improving the accuracy of PINNS in fitting boundary conditions, thereby enhancing overall precision, reduc-
ing the number of terms in the loss function, and simplifying the tuning of weight parameters. We intend to validate
the effectiveness of this algorithm on a two-dimensional axisymmetric thermo-elastic coupling problem, including
heat transfer, elastic deformation, and thermo-mechanical coupling deformation calculations.

The structure of the paper is as follows: Section [2| reviews conventional PINNs algorithms and introduces the
new BRR-PINNs framework. Section [3|presents the application of the proposed method to a thermo-elastic coupling
problem, along with numerical validation, comparative analysis, and an in-depth discussion of the algorithm. Section
[ summarizes the findings and discusses future work. describes the setup of the problem, including
the PDEs and boundary conditions. provides several examples on the implementation of the proposed
method. contains additional details that were omitted from Section [3] The relevant code and data are
available on GitHub: https://github.com/Yaoshengtai/BRR-PINNs. gitl
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2. Methodology
2.1. PINNs

The core idea of PINNS is to embed physical equations into the loss function of the neural network, utilizing the
ability of the neural network to fit the mapping from inputs to outputs of the PDEs. The network training process is
essentially the process of solving the equation. Once trained, the network describes the solution function of the PDEs.
First, consider the general form of a PDE as shown in (1)),

Nlu(x,1); 11 =0, xeQ, te[0,T], (1)

where, u is the latent solution of the PDEs function; N is a generalized differential operator, which can be linear or
nonlinear, parameterized by A, taking the heat transfer equation as an example, N = % — AV?; x and ¢ represent the
spatial coordinates and the temporal coordinates; Q is the solution domain that is a subset of R

To solve the PDEs, initial conditions and boundary conditions are required to constrain the problem. Use the
function f(x) to represent the initial condition, as shown in @) The boundary condition is represented as g(x, f),

shown in (3)), where 0Q is the boundary of the domain.

u(x,0) = f(x), x€Q, 2)
u(x,t) = gx,1), xe€0Q, te[0,T]. 3)

Automatic differentiation is a fundamental technique in neural networks. Using the chain rule, it can compute the
derivatives of the output variables with respect to the intermediate parameters and the input variables. This enables
the formulation of PDEs and conditions within the loss function. After training the network, the resulting function
that describes the output in relation to the input satisfies all specified equations and conditions, providing a solution to
the given PDEs under the specified conditions. The loss function can be decomposed into a weighted sum of several
individual losses, as shown in (@),

L = wppe Lprpg + WicLic + WocLbe + WaataLdatas 4)

where, Lppg, Lic, Lve and Ly, represent the residual loss of the PDE, the initial conditions, the boundary conditions,
and the ground truth data; the w’s denote the weight coefficients of each individual loss, and in this work these
coeflicients are tuned manually. Each loss is expressed as the average loss over the set of collocation points designated
for it, as shown in (3)-(8),
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where, (X, t | 6) represents the output of the neural network with parameters 6 when the input is (x, ), {x’,‘,, t’,ﬂ}sz” | 18
the set of collocation points designated to measure the residual loss of the PDEs, referred to as Lppg, defined on the
solution domain, i.e., {x’l‘,, t’;,}f{vjl c Q x [0, T1]; initial condition residual loss L. is measured on the spatial solution
domain, i.e., {xf.‘}kN; , € €; boundary condition residual loss Ly is measured on the boundary of solution domain
{xk, t’;}sz" | € 0Q X [0,T]; the set of collocation points {x, t(’;}kNj , for ground truth data is all positions in the domain
that ground truth is available, u* is the true value on the point (x’;, t’;). By embedding physical information into the
loss function using automatic differentiation, we can train the neural network to obtain solutions to the equations.
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"Hard" Method. One of the most critical aspects of accurately solving PDE:s is the satisfaction of boundary condi-
tions, which has made boundary condition enforcement a popular area of research. In the above-mentioned approach,
embedding boundary conditions into the loss function for training is a method also referred to as a "soft" manner [27]].
Sukumar et al. [19] proposed using approximate distance functions (ADFs) to exactly impose boundary conditions—
commonly referred to as the "hard" method, with research [53]] indicating significant advantages compared to the
"soft" manner. The use of ADFs for "hard" imposition of Dirichlet boundaries has been used in many research due to
its simplicity and accuracy. The ADF for polygon is represented as (9),

ADFS(X):q)(x):(l L 1) ©)

— +—+.t+—
111 m mn
) P

where, {¢i}f=1 is the distance function to the Dirichlet boundary number i from the spatial coordinates x; m is a smooth
order, and when m increases, the ADFs approach the exact distance. In our study, m is selected as 1.0. The ADFs
is a function equal to 0 on all Dirichlet boundaries and a positive value (approximate distance) on other positions.

Accordingly, construct the network’s output such that it constantly satisfies all Dirichlet boundaries, as shown in (10},

Us = Upgr T ¢ul’ (10)

where, u; is the output of the network; u, is the solution that is used to calculate the loss function; u,,, is a particular
solution that satisfies all Dirichlet boundaries but may not satisfy the other boundary condition and the PDEs. At
Dirichlet boundaries, where ADF ¢ equal 0, the solution u, equals the particular solution u,,.. Thus, the solution u,
consistently satisfies all Dirichlet boundaries, and the method is called a "hard" method to enforce boundary condi-
tions. It should be noted that each individual distance function in (9) is given based on different types of lines: line
segments and curves. For the boundaries of the most commonly used line segments, the distance function is given by

(TI)-(T3) (191,

(x=x)Q2 —y1) - @ —y)x2 —x1)

fi=f00 = - an
. _ 1 L 2 X2 + X1 2
£ 1(x) = Z[(E) —Hx— 2R ] (12)
2
/42 —
¢ = p(x) = Jf“[%“], (13)

where, two ends of the line segment: x; = (x1,y;) and X = (x,¥7); L is the length of the segment; ¢ is the ADF from
x = (x,y) to a line segment. When the solution domain is a convex polygon, we can also simplify the calculation using
¢ = f, because the extension line of the boundary lines of the convex polygon does not pass through the domain.

In summary, the whole process of the PINNs and ADFs based "hard" method is shown in[Figure 1] Utilize neural
networks to fit the solution functions of equations. Following this, ADFs "hard" method is employed to transform the
neural network output, in order to exactly impose Dirichlet boundaries. Subsequently, in the process of training the
network, the parameters are updated via backward propagation.

2.2. BRR-PINNs

A clear evidence of the inaccuracy of the PINNs method’s results is that the residuals of each equation, including
the PDEs and boundary conditions, do not approach zero. If after training the neural network, all equations are very
close to zero, such as 10~'° or even smaller, then we can confidently assert that the results are correct. However, reality
is often less ideal. In practical training, satisfying boundary conditions can be challenging. For Dirichlet boundaries,
the exact imposition can be achieved by the "hard" method as described in[2.1 However, for other types of boundary
conditions, such as Neumann or Robin boundaries, a "soft" manner of enforcement is still applied. Two of the possible
reasons for the difficulty in the training of loss function are as follows:

1. The loss function consists of multiple terms, as shown in {@). During training, there is a situation where a
boundary condition with excessively fast training speeds causes the entire process to converge to a wrong local
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Figure 1: PINNs computational framework and ADFs based "hard" method

minimum, thus preventing other boundary conditions from being satisfied. In relatively simple problems like
heat transfer, this issue can be addressed using multi-task learning (MTL) methods. However, in problems with
a larger number of boundary conditions and complex equations that exist with significant coupling between
them, such as in deformation problems, experimental evidence shows the failure of MTL methods.

2. The satisfaction of boundary condition equations not only relies on points located on the boundary but also
involves the influence of interior points. When the output values of the interior points are poorly trained, it
can easily affect the satisfaction of the boundary conditions. Moreover, many boundary condition equations are
often differential equations, involving gradient terms or even higher-order differentials, which are more suscep-
tible to the influence of interior points. Therefore, achieving the satisfaction of the boundary condition requires
a coordinated interaction between the points on the boundary and the interior points, which is challenging in
relatively complex problems.

To address the issues identified in the analysis above, a new algorithm is proposed called Boundary Region Rein-
forcement (BRR). The core of this algorithm involves reducing redundant terms in the loss function and reinforcing
the boundary and the nearby interior region. We achieve the former by implementing the "hard" method at Dirichlet
boundaries; and achieve the latter by assigning the boundary and nearby collocation points larger weight coefficients
during training, thereby prioritizing their learning process.

The first step of the BRR-PINNSs algorithm is to formulate PDEs that describe the physical problem. The governing
equations represent physical equilibrium, such as thermal equilibrium or force balance. Once the governing equations
are established, we identify the target variables to be solved. The number of these variables is typically equal to the
number of independent governing equations to ensure that the system is mathematically determined. These target
variables governing the physical system (e.g., displacement in solid mechanics), termed as primitive output variables,
serve as the primary outputs of the neural network. Step 2 aims to deal with boundary conditions. Dirichlet boundary
conditions for primitive variables can be directly imposed exactly by the "hard" method. For other types of boundary
conditions, intermediate variables, which are added to the outputs of the network, are defined to transform them into
Dirichlet boundaries. This process generates a set of connecting equations, denoted as f.., between intermediate and
primitive variables. The details of this transformation will be explained later. In step 3, we reinforce the boundary
region at these connecting equations, using the boundary region reinforcement function (BRRF), which will be defined
below. The complete algorithm flow is depicted in Algorithm 1.

Here, we elaborate on the process of imposing the boundary conditions (Step 2) in detail. Assume a boundary
condition, which is not Dirichlet boundary regarding the primitive output variable, g(uy,Xx) = 0, where u, is the
network output and x is the spatial coordinate of the network input. We define an intermediate variable g = g(uy, X),

5



Algorithm 1: Boundary Region Reinforcement Physics-Informed Neural Networks (BRR-PINN )

Data: Collocation points from the solution domain: x
1 Step 1: Formulate the governing PDEs and identify the primitive output variables u,.

2 Step 2: Handle boundary conditions as follows:

3 for each primitive output variable uj, inu, do

4 for each Dirichlet boundary condition for uﬁ, do

5 Compute the distance function ¢;

6 end

_L
7 Calculate the approximate distance function (ADF): ¢(x) = (21;:1 q%,,,) "
J
8 Give a particular solution u;ar for u;,;
o s I i

9 Impose Dirichlet boundary conditions for u},: uj, = uy,. + ¢ u,,;
10 end
11 Define the set of intermediate output variables q for non-Dirichlet boundary conditions;
12 Construct the corresponding set of connecting equations fepc.
13 for each intermediate output variable ¢; in ¢ do
14 Impose Dirichlet boundary conditions for ¢; using the “hard” method;
15 end

16 Step 3: Reinforce the boundary region
L, = wl, mean ( (fi,.(x) - BRRF(x))” ),

17 Compute the total loss function: £ = }; L{;DE +X L
18 Train the network parameters.
19 return 6

Result: Trained network parameters 6 (i.e., the solution)

therefore, the boundary conditions can be transformed into Dirichlet boundary conditions for the intermediate variable
q. By also treating g as an output of the network, we can impose Dirichlet boundary conditions exactly on g. However,
since an additional output variable ¢ is introduced, a connecting term needs to be added to the loss function, which
describes the relationship between the intermediate output variable g and the primitive output variables u, as shown
in (T4),

Jene(X) = q — g(up,x) =0. (14)

This equation holds throughout the domain. Due to the "hard" imposition of the Dirichlet boundary condition on ¢, g
constantly equals zero at this boundary.

This process enables the transfer of boundary conditions to the entire domain, where the boundary region rein-
forcement can subsequently be applied. And this is why we define the intermediate variables and the connecting
equations. Several implementation examples of this process are provided in[Appendix B}

The ability of the algorithm to reduce redundant terms in loss function lies in defining intermediate variables
to eliminate redundant boundary conditions. For example, the conditions on two different boundaries might be
df/0x = 0 and 0f/0x = 1, respectively. By defining the intermediate variable ¢ = df/dx (connecting equation),
these conditions are transformed into Dirichlet boundary conditions on both boundaries. Then, by giving the par-
ticular solution g, the conditions are exactly imposed, converting two boundary conditions into one connecting
equation. In another solid mechanics cases, where the shear stress 7 on all free surfaces is zero, the intermediate
variable can be defined as the shear stress 7, which takes a value of zero on all free surfaces, thus reducing multiple
boundary conditions to a single connecting equation.

Another core aspect of the algorithm lies in boundary region reinforcement (Step 3) through the use of the BRRF
function, which enables faster convergence and more accurate computations. The reinforcement of the boundary and
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the nearby interior region is achieved by reconstructing the ADFs shown in (@). The ADF ¢ is equal to O at the
boundaries, and as the distance from the boundaries increases, ¢ gradually increases. Therefore, as shown in (I3)), the
ADF is exponentially transformed such that it reaches its maximum at the boundaries and decreases as the distance
from the boundaries increases. We refer to this function as the Boundary Region Reinforcement Function (BRRF).

BRRF(x) = 3 - exp (—a - ADF(x)), (15)

where, 8 and « are adjustable parameters, and x is the spatial coordinates. And then, let the reinforcement coefficient
at the center of the solution domain be 1, meaning no reinforcement is applied. Obtain the value of @ and substitute it
into (T3) to obtain the complete expression of BRREF, as shown in (T6)),

ADF(x,) (16)

(— Ing- ADF(X))
BRRF(Xx) = -exp| ———],
where, X, is the coordinate of the center of the solution domain. The feature of BRRF is that at the boundaries, BRRF
equals 3; at the center of the domain, BRRF equals 1; as the distance from the boundaries increases, BRRF gradually
decreases. shows the distribution of BRRF in domains of different shapes in two-dimensional problems, and
the reinforcement coeflicient 8 can be adjusted. The BRRF enhances f.,. by reinforce the boundary region, denoted
as fene - BRREF, thus prioritize interior points around the boundaries in the computation.

In summary, the entire process described above is illustrated in [Figure 3]

BRRF BRR
) 10 ) 5
9
8 4
1
7
6 3
0 5
4 2
3
-1
2 1
1
-2
0 0 -2 -1 0 1 2
X X X
(a) The BRREF distribution of a convex polygon do- (b) The BRREF distribution of a concave poly- (c) The BRREF function distribution over a do-
main (square), reinforcement coefficient 8 = 10 gon domain, reinforcement coefficient 8 = 5 main with curved boundaries, 8 = 5

Figure 2: In two-dimensional problems, the BRRF distribution over various-shaped domains with red lines indicating the boundaries, including
convex polygon domain, concave polygon domain and domain with curved boundaries.

The BRR-PINNs method offers two main advantages:

1. The number of loss function terms is reduced, which leads to simplicity in adjusting the weight parameters in
@), particularly beneficial for problems with multiple and repetitive boundaries. This method enables neural
network models to handle more complex geometry and a greater number of boundary conditions effectively.

2. Prioritize interior points near the boundaries by reinforcing the boundary region, leading to more accurate
satisfaction of the boundary conditions.

As shown in we compare the proposed BRR-PINNs with several existing approaches, including con-
ventional PINNs, the "hard" method, and g-PINNs, in terms of boundary enforcement, the number of loss terms.
Suppose that the number of governing PDEs is M,; the total number of boundary conditions is M}, among which M
are Dirichlet-type constraints. Let M. denote the number of distinct connecting equations. Clearly, M, < M;, — M.
Let N denote the number of sample points. Regarding boundary enforcement, the proposed BRR-PINNSs incorporate
intermediate-variable transformation and Dirichlet imposition (IVD), together with boundary region reinforcement
(BRR).
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Figure 3: BRR-PINNs computational framework
Method Boundary Enforcement # Loss Terms
Conventional PINNs "Soft" enforce M, + M,
"Hard" method PINNs ~ "Hard" impose (Dirichlet-type) M, + M — My
g-PINNs "Soft" enforce 2M, + M,
BRR-PINNs IVD+BRR M, + M,

Table 1: Comparison of the boundary enforcement and the number of loss terms of different methods

3. Numerical Experiment

This section uses a two-dimensional axisymmetric thermo-elastic coupling system of a circular ring as an exam-
ple to demonstrate the capabilities of BRR-PINNs. The problem is derived from the sealing ring in a non-contact
mechanical seal, with boundary conditions that closely replicate practical operating environments, highlighting the
method’s applicability to real-world engineering problems. This problem can be divided into three parts: heat trans-
fer, elastic deformation, and thermo-elastic coupling deformation. The detailed description and setup can be found
in In this section, we will compare the proposed BRR-PINNs method with several existing methods,
including the conventional PINNs, "Hard" method PINNs, and g-PINNs. To evaluate the computational result, a L,
evaluation metric, as shown in @

mean( | Predict — Exact |
Ermse = \/ ( | )’ a7

mean( | Exact [2)

where, "Predict” is the result of PINNs, and "Exact" is the result of FEM. They are both vectors composed of the
outputs at the collocation points in the solution domain.

For each method, we follow the hyperparameter-tuning procedure and the stopping criteria described in [Ap]
The details of the tuning process and the parameters selected for each method will be provided in

Append

3.1. Heat Transfer Problem

The heat transfer problem that we considered is described in detail in We compare the memory
usage, computational time per epoch, floating point operations (FLOPs) per epoch, and the computational accuracy
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of the proposed BRR-PINNs with several existing methods in using the experimental setup in
As shown in the results, BRR-PINNs require memory usage and computational time comparable to conventional

PINNSs and "hard" methods, while clearly outperforming g-PINNs, whose higher-order derivatives lead to substantially
higher computational cost. More importantly, BRR-PINNs achieve a computational accuracy on the order of O(107%),
performing an improvement of approximately one order of magnitude over the other methods.

Method GPU Memory Time/epoch FLOPs/epoch ¢&,,, Stopepoch
Conventional PINNs 1.3 GB 0.46 s 2.797e10 1.5e-2 6600
"Hard" method PINNs 1.3GB 0.56 s 2.801e10 7.1e-3 8200
g-PINNs 6.4 GB 1.33s 1.113el1 9.9e-2 1200
BRR-PINNSs (Ours) 1.6 GB 0.72 s 3.428e10 6.0e-4 8400

Table 2: Comparison of different methods on the heat transfer problem

As shown in Figure [ we present the accuracy of the different methods throughout the training process. We can
clearly observe the superiority of our proposed method, BRR-PINNs, which achieves an accuracy of the order of
O(107™*). The resulting temperature-rise distributions from BRR-PINNs and the absolute error with the FEM result
can be found in[6] More details of the hyperparameter tuning process, selected parameters, the training process, and
the resulting temperature-rise distributions for each method are provided in[Appendix C.2.1]

0 -1
10 —— Conventional PINNs 10

—— "Hard" PINNs
—— g-PINNs 1072

101 BRR-PINNs (Ours) “E Emse
" 10-3 o Lpee
R
%107 10-4 —*— L,

—%— Lp;

10-3 107

0 2000 4000 6000 8000 1 3 10 30 100 300
Epoch B

Figure 4: Accuracy comparison of different methods on Figure 5: The effect of boundary reinforcement coefficient 8 in the

heat transfer problem heat transfer problem

T — To/(K) T — To/(K) Absolute Error/(K)
~0.02 10.0 ~0.02 10.0 ~0.02 ) 1.0e-2
g g0 & g0 & 8.0e-3
N 6.0 N 6.0 ~ ) 6.0e-3
0.01 40 0.01 40 0.01 D > 4.00-3
2.0 2.0 2.0e-3

0.00 00 0.0 . 00 0.0 —— 0

0.1350 0.1465 0.1580 0.1695 0.1350 0.1465 0.1580 0.1695 0.1350 0.1465 0.1580 0.1695

r/(m) r/(m) r/(m)
(a) FEM (b) BRR-PINNSs (c) Absolute Error

Figure 6: The result from BRR-PINNs

We further analyze the effect of the boundary reinforcement coefficient 8 on each loss term and the overall accu-
racy. As shown in Figure [5} increasing 8 leads to a clear decreasing trend in all loss of boundary conditions, again
demonstrating that our algorithm effectively enforces the boundary conditions. However, as 5 increases, the loss terms
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of the governing PDEs get less priority during training, resulting in an observable increase in residuals. This reveals
a trade-off between boundary satisfaction and the governing equations. Consequently, the overall error &, first
decreases and then increases as S increases. The choice of 8 should therefore balance these two factors: it should be
large enough to significantly reduce the boundary losses, yet not so large that it severely affects the PDEs residuals.

Moreover, when 8 = 1, the model simply incorporates the intermediate-variable transformation and Dirichlet
imposition without applying boundary region reinforcement. This serves as an ablation case for BRR-PINNs and
highlights that the boundary region reinforcement is the core component of the proposed architecture.

3.2. Elastic Deformation Problem

We then consider the elastic deformation problem, described in detail in We compare our BRR-
PINNs with conventional PINNs and the “Hard” method PINNs. Note that g-PINNs require a significantly larger
computational graph for this problem and consequently require far more GPUs memory (larger than 40GB), beyond
what is typically available on standard GPUs. Therefore, we do not include g-PINNSs in our comparison.

Using the experimental setup in[Table C.8] together with the hyperparameter tuning strategy and stopping criteria
described in the comparison results are presented in It is evident that our proposed BRR-
PINNs outperform other methods, achieving approximately one order of magnitude improvement in accuracy without
increasing too much training complexity, including GPU memory usage or training time per epoch. The accuracy
curves during training for displacement in the r-direction and z-direction are shown in Figures [7] and [§] respectively.
The predicted displacement maps obtained using the BRR-PINNSs, along with the corresponding absolute error distri-
butions, are shown in Figure[9} Additional details including the selected parameters and visualizations of the results

from other methods are provided in

Method GPU Memory Time/epoch FLOPs/epoch &.,.(4;) &mse(u;) Stop epoch
Conventional PINNs 12.13 GB 0.82s 3.460el1 3.9e-3 1.1e-2 118k
"Hard" method PINNs 12.49 GB 0.88 s 3.464ell 3.2e-3 6.0e-3 160k
BRR-PINNSs (Ours) 13.59 GB 1.04s 3.831ell 1.1e-4 1.7e-3 161k

Table 3: Comparison of different methods on elastic deformation problem

10°4 —— Conventional PINNs 100 —— Conventional PINNs
\ "Hard" PINNs "Hard" PINNs
10-1 | y —— BRR-PINNs (Ours) ) —— BRR-PINNs (Ours)
3 2 3101
v 10~ o
£ £
W w
103 102
1074
0 50000 100000 150000 0 50000 100000 150000
Epoch Epoch

Figure 7: Accuracy comparison of different methods of r-direction Figure 8: Accuracy comparison of different methods of z-direction
displacement on elastic deformation problem displacement on elastic deformation problem

Similarly to the heat transfer problem, the boundary coefficient 5 exhibits a parallel behavior in the elastic defor-
mation case. As shown in Figures [T0] and [TT} increasing 8 leads to higher loss residuals of governing PDEs while
significantly reducing boundary condition errors. The overall computational errors first decrease and then increase as
B grows, indicating the trade-off involved in selecting .
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Figure 9: FEM solution and BRR-PINNs computed result for the elastic deformation problem (displacement field [u,, u;]), along with the absolute

error between them
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Figure 10: The effect of boundary reinforcement coefficient § on

Figure 11: The effect of boundary reinforcement coeffi-

loss terms in the elastic deformation problem cient 8 on accuracy in the elastic deformation problem

3.3. Thermo-elastic Deformation Problem
Finally, we consider the thermo-elastic coupling deformation problem, described in detail in [Appendix A.3] The

comparison results are presented in and Figures [I2] and [T3] The predicted displacement maps obtained
using the BRR-PINNs are shown in Figure [T4] More details can be found in It is clear that our

proposed method is capable of accurately solving multiphysics coupling systems and performs much better than

existing methods.
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Method GPU Memory Time/epoch FLOPs/epoch &.,.(4;) &mse(u;) Stop epoch
Conventional PINNs 14.38GB 0.94s 4.120el1 2.7e-3 5.3e-2 95k
"Hard" method PINN’s 14.55GB 1.00s 4.124el1 1.4e-3 1.2e-2 69k
BRR-PINNSs (Ours) 14.26GB 1.17s 4.701el11 1.2¢-4 1.4e-3 102k
Table 4: Comparison of different methods on thermo-elastic deformation problem
10 —— Conventional PINNs —— Conventional PINNs
—— "Hard" PINNs 10°1 —— "Hard" PINNs
10-1 —— BRR-PINNs (Ours) —— BRR-PINNs (Ours)
E} 310
21072 E
g g
W w
1073 1072
104 1073

0 20 40

60

80 100 0

Epoch (x103)

Figure 12: Accuracy comparison of different methods of r-
direction displacement on thermo-elastic deformation problem
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Figure 13: Accuracy comparison of different methods of z-
direction displacement on thermo-elastic deformation problem
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Figure 14: FEM solution and BRR-PINNs computed result for the thermo-elastic coupling deformation problem (displacement field [u;, u.]), along

with the absolute error between them
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4. Discussion and future work

In summary, we proposed a novel framework, BRR-PINNs, and demonstrated its ability to significantly enhance
computational accuracy across three representative problems: the heat transfer problem, the elastic deformation prob-
lem, and the thermo-elastic deformation problem. Compared to several existing approaches, including conventional
PINNSs, "hard" method PINNs, and g-PINNs, our method achieves an improvement of approximately one order of
magnitude in precision. Furthermore, we conducted a detailed analysis of the boundary reinforcement coefficient
and highlighted the trade-off between reducing the governing PDE residuals and the satisfaction of the boundary
conditions.

Intuitively, the failure of conventional PINNs can be attributed to the fact that, in the early stages of training, the
model lacks sufficient guidance on where to converge and may become trapped in local minima, ultimately failing
to satisfy all governing equations and boundary conditions. Our method mitigates this issue by introducing a frame-
work that prioritizes boundary regions over the interior domain. Experimental results demonstrate that this strategy
effectively guides the model toward more accurate solutions. Moreover, the framework naturally extends to com-
plex geometries, as illustrated in Figure 2] These observations indicate that BRR-PINNs hold strong potential for
addressing more challenging systems, including complex geometries, higher-dimensional PDEs, and nonlinear PDEs.
However, further validation of BRR-PINNSs on these sophisticated problems remains an important direction for future
work.

Our future work will proceed in several directions. First, as mentioned above, we aim to validate the proposed
framework on more complex and challenging problems. Second, we plan to develop a more rigorous mathematical ex-
planation for the phenomena observed in this study and further improve the efficiency and accuracy of the framework.
Finally, the current implementation still relies on empirically tuned parameters. An additional research direction is
to incorporate multi-task learning techniques or other self-adjusting weighting strategies into the framework, while
ensuring the model performance.
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Appendix A. Problem Setup

In this paper, we consider the heat transfer and deformation problem of a two-dimensional axisymmetric circular
ring, with symmetry in the angular direction 6. The physical parameters of the ring are listed in[Table A-3]

Physical parameters

Inner diameter ry 0.135m
External diameter r, 0.1695 m
Height i, 0.02m
Poisson ratio u 0.14
Convective heat transfer coefficient & 2.06e4 W/(m? - K)
Heat conductivity coeflicient k 60 W/(m - K)
External temperature 7 303.15K
Maximum temperature rise 7, 10K
Elasticity modulus E 420 GPa
Low pressure P; 1 MPa

High pressure P, 10 MPa
Linear thermal expansion coefficient de-6 K!

Table A.5: Physical parameters for the two-dimensional axisymmetric circular ring

Appendix A.1. Heat Transfer Problem

The heat transfer equation in cylindrical coordinates (r, z, 8) is formulated as shown in @,

2 2
BT_k(lc')(aT) 19T aT)’ Al

— = —|lr—+ 5=+ =

ot ror\ or] r286> 972
where, T represents temperature; t denotes the time variable; and k is the thermal conductivity coefficient. With the
inclusion of steady-state and symmetry conditions, the heat transfer equation is formulated as shown in (A-2))

10 (0T &T
= — =0. A2
rar(r(?r)+6z2 0 (A-2)
Tiso (l")
r Y z
h [y (Isothermal Boundary) Tn(K)
1
S I3 (Convective
I’; (Adiabatic Boundary)
Boundary)
Ty
0 T 12 r 0(K) r
I, (Adiabatic Boundary) L6 1 7

Figure A.16: The temperature rise distribution for the isothermal bound-

Figure A.15: The boundary conditions of the heat transfer problem ary

The boundary conditions for the heat transfer problem are shown in The shaded area represents a
cross-section of the circular ring, which is exposed to an environment at a temperature of 7¢. The inner diameter
boundary I'; and the bottom boundary I'; are adiabatic boundaries, the outer diameter boundary I's is subject to
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convective heat transfer and the upper boundary I'4, an isothermal boundary, is maintained at a constant temperature.
The boundary conditions for these four boundaries are given by (A.3)-(A6),

M _o, (noer, (A3)

or

T
L (A4)

0z
WT=To)+ Koo =0, (D) €Ty (A3)

r

T-Ty-Tis() =0, (rz) eI}y (A.6)

where, & is the coeflicient of convective heat transfer, k is the thermal conductivity coefficient, and Tjs, is the distribu-
tion of constant temperature rise on the boundary I'y, and is shown in[Figure A.T6] In this paper, T}, is constructed by
a function such that it satisfies the boundary conditions of the inner and outer diameters simultaneously at both ends.
The construction method is shown in (A7),

n+l1 n
Tiso(r)sz(n(r_rl) —(n+1)(’_”) +1), (A7)

rn—-rnr rp—n

where, T, is the maximum temperature rise; order n is used to control the shape of the curve. In this work, we choose
T,, = 10K and n = 2. Other physical parameters can be found in[Table A3

Appendix A.2. Elastic Deformation Problem
Next, we consider the elastic deformation for the two-dimensional axisymmetric circular ring. The problem

exhibits symmetry in the angular direction, with shear stresses in the angular direction being zero, i.e., 0y, = 0y, =
09 = 0 = 0. The equilibrium equations for the infinitesimal element in cylindrical coordinates (r, z) are given by

(A.3)-(A9).

oo, 0o,
+r

r Ew oz + 0, —0og =0, (A.8)
oo, 0o,
r (9; +r o +0,,=0, (A9)

where, according to the reciprocal theorem of shear stress, o, = 0. The relationship between the stress tensor and
displacements for linear elastic isotropic materials is given by (A-10)-(A:13),

0,,=2G:11:Zl%+ 1_“2# (”7+Z—”;Z) (A.10)

mzzcill_-zfﬁ e (G B, (A1)

r=26[{ B (S ), (12

o = G(% + ‘95;’), (A.13)

where, u, represents the displacement in r direction; u, is the displacement in z direction; u is the Poisson’s ratio of

the material; G is the shear modulus, given by G = 2(% where E is the Young’s modulus of the material. These
parameters value can be found in Equations @HE can fully describe the elastic deformation, and the
output variables include displacement field [u,, u.]" and stress tensor [0, 09, 0z, 0217 . The boundary conditions for
elastic deformation problem are shown in Boundaries 'y, ' and 'y are imposed pressure perpendicular
to their surfaces. Boundary I'y has high pressure, P, = 10MPa; boundary I'; has low pressure, P; = 1MPa; and
boundary I'y has a varying pressure distribution as shown in Since the pressure acts perpendicularly to
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Figure A.17: The boundary conditions of the elastic deformation

problem Figure A.18: The varying pressure distribution for the I'y boundary

the surface, there are no components along the surface direction. Boundary I'; is imposed a displacement constraint
in z-direction, and similarly, there are no stress components along the surface. On these four boundaries, the stress
component o, = 0. The boundary condition equations for the four boundaries are shown in (A.14)-(A.17),

oy =Py 0,=0, (r,2) €Ty, (A.14)
u, =0, o, =0, (r,2) €Ty, (A.15)
o =Py, 0,=0, (r,2) €T3, (A.16)
0, =P@); 0,=0, (r,z) €ly. (A.17)

Appendix A.3. Thermo-elastic Deformation Problem
The thermo-elastic deformation equations for a two-dimensional axisymmetric circular ring are analogous to the

elastic deformation equations. The equilibrium equations are same as those of elastic deformation, as shown in
(A8)-(A29). The expression for the stress tensor needs to incorporate the thermal expansion effect, as illustrated in

(A.T8)-(A.21),

o, = 2G :]1__2’:1 (Z‘r’ +- _“2# (”7 + aa—“;) — yAT, (A.18)

aggzzGill__z‘;%+ 1_“2# (aa—"zwz”‘r’)_ AT, (A.19)

0. =2G 11_;2’;63—1? + 1_"—% (é;‘r’ + ”7) — yAT, (A.20)

o = G(% + ‘9;1’), (A21)

where, ¥ is the thermal stress coefficient, y = %, where « is the linear thermal expansion coefficient; AT is the

temperature rise. It should be noted that AT is not a constant; it varies with coordinates (r, z). Therefore, when
substituting it into the equilibrium equation, Bg—f # 0. The boundary conditions imposed for thermo-elastic coupling

deformation problem are totally the same as elastic deformation, shown in section ??.
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Appendix B. BRR-PINNs Implementation Details

In this section, we provide details on how to implement the BRR-PINNs method, using the example problems

defined in [Appendi A)

Appendix B.1. Heat Transfer Problem Implementation

The first step of the BRR-PINNs algorithm is to formulate the governing PDEs and determine the primitive output
variables. As shown in[A.2] there is only one equation and the single primitive variable is the temperature 7.

Step 2 addresses the boundary conditions given in (A3)-(A.6). Among them, only (A.6) is a Dirichlet condition,
which can be directly enforced using the “hard” method described in Section 2.1} For the other three boundary
conditions, we introduce three intermediate output variables:

oT oT oT
-8 =L =TTy + K
D= T B ( 0) + o

(B.1)

These intermediate variables are defined over the entire domain (7, z), and their corresponding connecting equations
are given as follows:

ot (r,
frer ) = 17,2~ T2
p
oT (r,
fcznc(ra ) =q(r,2) - ér Z)’
Z
oT (r,
Jone(r2) = q3(r,2) = h(T(r,2) = To) —k g 2,

Using these intermediate variables and connecting equations, the boundary conditions can be reformulated as:

q1(r,2) =0, () €Ty, (B.2)
¢(r,2) =0, (nz) €Ty, (B.3)
q3(r,z) =0, (r,z) € I3, B.4)

which are Dirichlet boundaries with respect to the intermediate variables [q1, g2, ¢g3]", and can therefore be directly
imposed using the “hard” method.
Step 3 is to reinforce the boundary regions. The loss term corresponding to each connecting equation can be
expressed as:
L, = Wiy mean ((fl, - BRRF)?). (B.5)

The output variables of the neural networks is [T, g1, g2, q3] ", and the loss function is £ = Lppg + Zle Lénc. The
network is then trained to minimize this total loss function.
In summary, the entire process described above is illustrated in

Appendix B.2. Elastic Deformation Problem Implementation

The formulation of the elastic deformation problem is presented in (A.8)—(A-13). It is important to emphasize that
only (A:8) and (A.9) are the governing PDEs, representing the force balance of the differential elements. In contrast,
(AT0)—(A-T3) are the constitutive relations that describe the relationship between stress and displacement in specific
materials and are distinct from the governing equilibrium equations. Therefore, the primitive variables are u, and u,.

The next step addresses the eight boundary conditions presented in (A-14)-(A17). The condition u, = 0 on
the boundary I'; is a standard Dirichlet condition which can be "hard" imposed. The remaining conditions are not
Dirichlet-type with respect to primitive variables are u, and u,. It is natural to define four intermediate variables, o,
Oggs Tz, Oy, and (ATO)—-(AT3) will serve as the connecting equations. Compared to conventional PINNs, whose
loss function consists of 2 + 8 = 10 terms, the BRR-PINNs method requires only 6 loss terms.

Finally, we proceed the boundary region reinforcement, which is the same as Step 3 of the heat transfer case in
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Appendix C. Missing Details for Section 3]

Appendix C.1. Hyperparameter Selection and Stopping Criteria

Hyperparameter Selection. The success of PINN-based methods relies on careful hyperparameter tuning, including
the learning rate, the weights assigned to each loss term, the boundary reinforcement coefficient, and others. In this
paper, we adopt an empirical tuning strategy. For each method-conventional PINNs, "hard" method PINNs, g-PINNs,
and BRR-PINNs-we follow the tuning procedure outlined below:

e Step 1: Select a learning rate that ensures a stable and consistent decrease of the loss function.
e Step 2 (if applicable): Adjust the boundary reinforcement coefficient .

o Step 3: Empirically adjust the weights of the individual loss terms according to their training behaviors.

Stopping Criteria. Our stopping criteria is to monitor the whole loss function L, and denote by L(i) the loss value at
i-th epoch. We define checkpoints at epochs

kW, k=1,2,3,...

For each checkpoint kW with k > 2, compute the average loss over current and previous windows of length W :

1 kW
Low®)i= 35 >, L,

i=(k-1)W+1

1 (k—=HW
L) i= = > L.

i=(k—=2)W+1

The relative improvement between two successive windows is defined as

T k)—L ur k
A oo Lm0 = L)
Leur(k)
Using Ly, (k) as the denominator makes the measure sensitive to orders of magnitude reductions. For example,
when the loss decreases from 0.01 to 0.001 , the metric yields A(k) = 9, while the decrease from 0.11 to 0.1 results in

A(k) = 0.1. We then terminate training once the relative improvement falls below a threshold, i.e., A(k) < e. In this
work, we set the stopping threshold to € = 0.01.

Appendix C.2. Numerical Experiment Details
Appendix C.2.1. Details for Heat Transfer Problem

Experimental Setup

Neural network 5 x 64 MLP
Activation function tanh

Optimizer Adam

Sampling method Random per epoch
Collocation points in domain 128 x 128
Collocation points per boundary 64

Batch size 1024

Checkpoint window size W 100

Stopping threshold & 0.01

GPU NVDIA RTX 4090

Table C.6: Experimental setup for the heat transfer problem
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Figure C.19: Learning rate tuning for each method

We follow the hyperparameter tuning strategy and the stopping criteria described in[Appendix C.I] We first set all
loss term weights to 1 and the boundary reinforcement coefficient 8 to 10, then tune the learning rate for each method.
As shown in[Figure C.19] we select a learning rate of 1e-5 for all methods. We also note that the oscillations observed

in g-PINNs arise from higher-order differentiation rather than from the choice of learning rate.

We then tune the other parameters including the loss term weights and boundary reinforce coefficient. We sum-
marize the tuning process in the following Table [C.7] The loss value we report is the average of the last W = 100
epochs. We note that parameter tuning and selection are based on the behavior of each individual loss term; the errors
with respect to the "true” FEM solution are provided solely for reference. The entries in bold in Table[C.7] are the set

of selected parameters, and we provide the training process for each loss term in Figure[C.20}
For a more intuitive comparison, Figure [C.21] presents the predicted temperature-rise distributions alongside the
absolute error with respect to the "true" FEM solution. It is clearly observed that BRR-PINNs outperform the other

methods.
Method Loss term weights B L Lpde Lr, Lr, Lry Lr, Lgrad Stop epoch Ermse
[1,1,1,1,1,-] - 1.9e-2 7.8¢e-4 1.2e-3 1.5e-4 9.5e-5 1.7e2 - 1500 1.2e-1
Conventional PINNs [1,1,1,1,10,-] - 55e-3  1.3e-3 5.le4 8.le-4 1.5¢-3 l.de4 - 7600 1.4e-2
[1,1,1,3,10,-] - 6.4e-3  1.2e-3 49e-d4 79e-4 63e-4 2.0e-4 - 6600 1.5e-2
[1,1,1,1,-.- - 24e2  62e-3  89e-3 94e-4  7.9e-3 0 - 7400 1.2e-2
"Hard" PINNs [1,3,1,3,-.- - 89e-2 2.7e2 89e-3 2.7e-3 l.le2 0 - 4100 1.5e-2
[3,3,1,10,-,-] - 33e-2  6.2e-3  23e-3 1.0e-4 7.8e-4 0 - 8200 7.1e-3
[1,1,1,1,1,1] - 2.6e-2 2.le4 19e-3 3.7e-4 34e-3 2.0e2 89e-4 1200 1.3e-1
o-PINNs [1,1,1,1,10,1] - I.le-1 2.8e-4 23e-2 49e-4 24e2 56e3 59e3 1300 7.0e-2
[1,3,1,1,10,1] - 1.3e-1 5.1e-4 4.2e-3  3.3e3 2.7e-2  79e-3  3.5e-3 1400 8.0e-2
[1,3,1,3,10,1] - 1.5e-1 3.3e-4 3.7e-3 52e-4 83e-3 1.de-2 3.7e-3 1200 9.9¢-2
[1,1,1,1] 1 29e-3  4.5e4  49e-3 3.2e-3  1.5e-2 0 - 7700 4.6e-2
[1,1,1,1] 10 2.8e-3  S.le4 4.0e-5 6.9e-6 1.3e-4 0 - 9300 1.0e-3
[1,1,1,1] 30 | 8.7¢-3 1.0e-3 2.0e-5 2.8e-6 5.4e-5 0 - 8400 6.0e-4
BRR-PINNs [1,1,1,1] 100 | 8.5e2 1.2e-2 1.7e-5 3.6e-6 4.le-5 0 - 8400 7.9e-4
[1,1,1,1] 300 | 2.9e-1 8.7e2 22e-6 1.8e-6 1.8e-5 0 - 9700 1.3e-3
[1,3,1,3] 30 1.3e-2  9.2e-4 6.3e-6 1.7e-5 3.5e-5 0 - 11700 2.2e-3
[3,1,1,1] 30 1.8¢-2 1.2e-3 7.7e-6 1.8e-5 1.2e-4 0 - 6100 2.0e-3
[10,1,1,3] 30 51e2  1.1e-3 1.5e-4 49e-5 8.5¢-5 0 - 8900 3.2e-3

Table C.7: Comparison of memory usage, computational time, and training complexity. For the first three methods, the loss-term weights follow

the order [[rpde Ly,

5
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*,Lry, Lgrad ] For BRR-PINNG, the weights are ordered as Lyge and the connecting equation losses generated by boundaries
T'1, 2,3, respectively. Entries in bold highlight the chosen parameter sets along with their corresponding outcomes.
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Figure C.20: The training process of the selected model for each method.
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Figure C.21: Comparison of the resulting temperature-rise distributions from several existing methods and BRR-PINNs
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Appendix C.2.2. Details for Elastic Deformation Problem

Experimental Setup

Neural network 5x 128 MLP
Activation function tanh

Optimizer Adam

Sampling method Random per epoch
Collocation points in domain 128 x 128
Collocation points per boundary 128

Batch size 4096

Checkpoint window size W 1000

Stopping threshold & 0.01

GPU NVDIA RTX 4090

Table C.8: Experimental setup for the elastic deformation problem

Learningrate L, Li. Ls, Loy Lo, Lo, B
le-5 1 1 3 1 3 10 100

Table C.9: The selected weight parameters for BRR-PINNs method in the elastic deformation problem

Method Learningrate  Lbpe Lo Lrooor Ly L L L Ll LT
Conventional PINNs le-5 1 1 3 10 3 1 1 10 30 1
"Hard'"' Method PINNs le-5 1 1 10 3 - 1 1 1 30 1

Table C.10: The selected weight parameters for conventional PINNs and "hard" method PINNs in the elastic deformation problem

The predicted displacement maps alongside the absolute error with respect to the "true" FEM solution for each
method are shown in Figure[C.22]

Appendix C.2.3. Details for Thermo-elastic Deformation Problem

We use the same experimental setup with the case of elastic deformation problem, as shown in The
predicted displacement and error maps are shown in Figure[C.23]

Learningrate  Lhy. Liy: Ls, Loy Lo, Lo, B

le-5 1 1 3 1 3 10

Table C.11: The selected weight parameters for BRR-PINNs method in the thermal-elastic deformation problem

Method Learningrate L. L. L}'l’" LE’*’ Lﬁ L;z” Ll‘f;" L?;" L;f L;f
Conventional PINNs le-5 1 1 1 3 30 1 1 1 10 10
"Hard"' Method PINNs le-5 1 1 1 10 - 1 1 3 30 10

Table C.12: The selected weight parameters for conventional PINNs and "hard" method PINNs in the thermo-elastic deformation problem
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Figure C.22: Comparison of the resulting displacement maps from several existing methods and BRR-PINNS in the elastic deformation problem
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Figure C.23: Comparison of the resulting displacement maps from several existing methods and BRR-PINNSs in the thermo-elastic deformation

problem
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