

Boost Calibration for Dual-arm Co-robotic Ultrasound System

Shengtai Yao, Yixuan Wu, Russell Taylor, Emad M. Boctor

Johns Hopkins University, Baltimore MD 21218, USA eboctor@jhu.edu

Introduction

Clinical application

- Prostate cancer
- Ultrasound tomography (UST)

Challenges & motivation

- Dual robotic arm UST
- High calibration precision

Previous works

- BXp Calibrates each arm
- Point cloud for base to base

Our proposal

Boost calibrate based on primal calibration

System Setting

Dual-arm co-robotic ultrasound system

Clinical setup

Methods

• Linearized system $A\overline{X}\Delta Xt_1 = \overline{Y}\Delta YC\overline{Z}\Delta Zt_2$ with 21 unknown parameters and 3 constraints:

$$A_1 \Delta a_X + A_2 \Delta a_Y + A_3 \Delta a_Z + B_1 \Delta \theta_X + B_2 \Delta \theta_Y + B_3 \Delta \theta_Z + C_1 \Delta p_X + C_2 \Delta p_Y + C_3 \Delta p_Z = D$$
Subject to $\Delta a_X \perp a_{\bar{X}}$, $\Delta a_Y \perp a_{\bar{Y}}$, $\Delta a_Z \perp a_{\bar{Z}}$,

where,

$$U:=\bar{Y}^{-1}A\bar{X},W:=C\bar{Z}$$

$$\begin{split} A_1 &= -R_U(t_1)^{\wedge} \theta_{\bar{X}}, A_2 = (R_W t_2 + p_W)^{\wedge} \theta_{\bar{Y}}, \\ A_3 &= R_W(t_2)^{\wedge} \theta_{\bar{Z}}, B_1 = R_U(a_{\bar{X}})^{\wedge} t_1, \\ B_2 &= -(a_{\bar{Y}})^{\wedge} (R_W t_2 + p_W), B_3 = -R_W(a_{\bar{Z}})^{\wedge} t_2, \\ C_1 &= R_U R_{\bar{X}}^{-1}, C_2 = -R_{\bar{Y}}^{-1}, C_3 = -R_W R_{\bar{Z}}^{-1}, \\ D &= -R_U t_1 - p_U + R_W t_2 + p_W. \end{split}$$

- Specification: Multiple target points Mitigate ill-conditioned A_2), less Δa_Y noise sensitivity
- Error estimation: upper bound, fast, robust
- Validation:
- > Simulate error upper bound between desired and actual points, considering varying ultrasound noise levels
- Simulate a clinical setup with dual 2D probes

Results

100 (10 x 10) poses and 5 target position:

➤Without noise: 0.25mm

➤With +-1 mm noise: **0.35mm**

Less that ½ image resolution 0.75mm (1 MHz central frequency)

 "Boost" step increases calibration precision significantly

Pose component	First stage	Boost calibrated	
		A	В
Roll (degree)	1.0	2.8e-2	2.5e-3
Pitch (degree)	0.4	3.3e-2	2.1e-2
Yaw (degree)	1.1	1.2e-2	4.9e-3
Translation distance (mm)	3.5	1.3e-2	5.3e-3

Conclusion & Discussion

Summary

- Novel Boost Calibration for dual-arm UST
- High accuracy
- Robust to ultrasound noise
- Works with 2D data only

Limitation

- Calibration process is complex: requires multiple target points and robot poses
- Does not account for unreachable poses due to spatial or clinical constraints

Future work

- Test on real robotic system
- Apply to clinical prostate cancer imaging