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ABSTRACT

Traffic risk assessment is crucial for enhancing urban traffic safety and efficiency.
However, traditional research encounters the bottleneck that hotspot identification is
less liable to verify accurately in the spatial-temporal network. In this study, we
propose a novel approach for traffic risk hotspot detection in urban areas by leveraging
two complementary datasets: probe vehicle event data and user-reported traffic event
data. First, we employ a novel spatial-temporal network kernel density estimation (ST-
NKDE) to identify risk hotspots in the road network. Through a systematic parameter
selection process, we determine the optimal bandwidth values for distance and time.
Furthermore, we employ Jensen Shannon divergence (JSD) to quantify the differences
between the risk distributions from the two datasets. The visualization of risk maps
with the comparison of parameters further demonstrate the consistency and reliability
of our traffic risk hotspot detection model. Generally, by integrating two datasets,
this research contributes to the advancement of urban traffic safety measures and has
favorable implications for urban planning and traffic management strategies.

Keywords: Spatial-temporal network kernel density estimation (ST-NKDE); Optimal
parameters; Risk hotspot visualization; Dual dataset validation;
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INTRODUCTION

Urban transportation systems play a crucial role in modern society. However, with
the rapid urbanization and increasing vehicle volume, traffic safety has become a
significant concern for both policymakers and the general public. Traffic incidents,
such as collisions, congestion, and road closures, not only result in economic losses but
also bring severe risks to human lives. Therefore, identifying traffic risk hotspots and
understanding the underlying patterns of risky driving behavior and traffic incidents are
of great importance to enhance traffic safety and optimize transportation infrastructure
(1).

In recent years, data-driven approaches have been powerful tools for traffic risk
hotspot detection (2). These methods utilize large-scale and various datasets, including
floating car data and traffic event data, to model and predict traffic risk in both spatial
and temporal dimensions. Among these approaches, Kernel Density Estimation (KDE)
has been widely used for its ability to estimate the probability density function of traffic
risk in a continuous space. Traditional KDE methods consider the spatial distribution of
traffic events on a 2D plane, but in the context of road networks, such an approach may
oversimplify the risk estimation and fail to capture the complexities of road topologies.

To address these limitations, we use a novel approach, namely Spatial-Temporal
Network Kernel Density Estimation (ST-NKDE), to identify traffic risk hotspots in urban
transportation networks. ST-NKDE extends traditional KDE to a network space, where
the risk is considered to spread along road links rather than evenly distributed on a
2D plane. Moreover, by incorporating both spatial and temporal dimensions, ST-NKDE
allows for a more comprehensive representation of risk patterns, leading to accurate
hotspot detection and risk assessment.

The primary contributions of this paper are as follows:

(a). Novel ST-NKDE Method with Optimal Parameter Selection: We present the ST-
NKDE method, which integrates spatial and temporal information in a road network
to estimate traffic risk distributions. Moreover, we propose a systematic approach
to determine the optimal bandwidth parameters for the KDE process, ensuring the
effectiveness of the hotspot detection results.

(b). Dual Dataset Validation: To demonstrate the robustness and generalizability
of our method, we validate ST-NKDE on two heterogeneous datasets. The first dataset
comprises large-scale, long-term probe vehicle data, providing insights into risky driving
behaviors across the urban road network. The second dataset consists of user-reported
traffic event data, capturing the occurrence of various traffic incidents. Through this
dual dataset validation, we verify the applicability of ST-NKDE and the consistency of
its performance across different data sources.

(c). Similarity Analysis of Dual Datasets: We conduct a similarity analysis using
Jensen Shannon divergence (JSD) to examine the relationship between risky driving
behavior and actual traffic incidents. By comparing the risk distributions obtained
from the probe vehicle data and traffic event data, we uncover the correlation between
risk hotspots and reported incidents, revealing the underlying patterns and factors
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contributing to traffic risk.

In the remainder of this paper, we present a comprehensive review of existing
literature in traffic hotspot detection. Subsequently, we introduce the methodology
of ST-NKDE employed in this study. Additionally, we provide the details regarding
the process of optimal parameter selection. Afterwards, we present the results of the
dual dataset validation and the similarity analysis. Finally, the article concludes with a
discussion and summary of our findings, highlighting the contributions and potential
future directions of our research.

LITERATURE REVIEW

Traffic risk hotspot identification

Traffic risk hotspot identification is a crucial to identify locations with relatively high
risk levels for traffic incidents. Over the years, various methods have been proposed for
hotspot identification, each with its strengths and limitations.

One category of hotspot identification methods is based on statistical analysis of
historical traffic incident data (2, 3). For instance, logistical regression models have
been commonly used to model the influencing factors of traffic incidents and identify
hotspots based on the about 400 sets of accidents data of 10 major roads in Beijing city
(4). Additionally, Geographic Information System (GIS) techniques have been employed
to analyze spatial patterns and detect clusters of traffic accidents (5, 6) . While these
statistical methods have been widely used, they often neglect the temporal dimension
and the underlying network structure of road systems.

Another approach to hotspot identification involves the use of machine learning
and data mining techniques. Machine learning models (7–9), such as Support Vector
Machines (SVM) (10), Random Forest (7, 11, 12), and Artificial Neural Networks (ANN)
(13), have been applied to predict traffic incidents and identify hotspots. These methods
can capture complex relationships between risk factors and traffic incidents, but they
may require a large amount of labeled data for training and may be computationally
expensive.

However, most of the existing methods overlook the spatial and temporal
interactions among traffic incidents and the network structure of road networks, limiting
their effectiveness in capturing the dynamic nature of traffic risk.

Kernel density estimation

Kernel Density Estimation (KDE) is a widely used non-parametric method for estimating
probability density functions from data. In the context of traffic risk hotspot
identification, KDE can be applied to estimate the probability density function of traffic
incidents in a spatial context, assuming the road network as a 2D plane (14). KDE has
been successfully used in various applications, including traffic accident analysis (15).
However, traditional KDE methods overlook the network structure of road networks,
which can significantly impact the spatial distribution of traffic incidents.

To address the limitations of traditional KDE methods, researchers have introduced
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Network Kernel Density Estimation (NKDE) (11, 16–18) and Spatial-Temporal Kernel
Density Estimation (ST-KDE) techniques (19, 20). NKDE considers the road network as
a graph and incorporates spatial relationships and connectivity among road segments.
Chen et al. applied an NKDE method for traffic risk hotspot detection, where traffic
incidents are modeled as spreading along the road links rather than evenly distributed
on a 2D plane (16). This approach improves hotspot detection accuracy by accounting
for network topology. ST-KDE is an improved version of KDE that incorporates spatial-
temporal information, which allows for more accurate and efficient representations of
data patterns and trends over time and space (19).By combining the advantages of the
two types of method, ST-NKDE further extends the NKDE approach by incorporating
the temporal dimension, enabling the modeling of traffic incidents over both space and
time. It allows for the identification of risk hotspots that vary with time and location
(21). Therefore, ST-NKDE provides a more comprehensive understanding of traffic risk
patterns and dynamics.

The effectiveness of KDE-based models, including ST-NKDE, depends on the
selection of optimum parameters, particularly the bandwidth. The bandwidth
determines the diffusion range of each data point and influences the overall estimation of
risk density (22). Finding the optimal bandwidth is challenging, as it involves balancing
the trade-off between under-smoothing and over-smoothing the data.Various methods
have been proposed for selecting the optimal bandwidth. Cross-validation techniques,
such as K-fold cross-validation, can be used to evaluate the performance of different
bandwidth values and select the one that minimizes prediction errors. Grid search is
another common approach, where a range of bandwidth values is specified, and the
best value is determined through an exhaustive search. Moreover, heuristic methods,
such as Scott’s Rule and Silverman’s Rule, provide guidelines for bandwidth selection
based on the characteristics of the data.

To sum up, while ST-NKDE is a promising approach for traffic risk hotspot
identification, there is a research gap in its practical application and the selection of
its best parameters. More specifically, the real-world application and effectiveness of
ST-NKDE on diverse datasets from different cities and regions need further exploration
to ensure its generalizability and robustness. Furthermore, the aforementioned methods
for determining optimal parameters are typically used in supervised learning or purely
based on experience. For the hotspot identification, which is an unsupervised learning,
there still lacks efficient methods to obtain the optimal parameters. Thus, this paper will
propose an approximate approach to determine the optimal parameter values.

METHODOLOGY

In this paper, a spatial-temporal network kernel density estimation (ST-NKDE) method
is developed to identify risk hotspots in road networks. To effectively reveal the spatio-
temporal relationship within the road network, we improved this method from the
traditional kernel density estimation method and provided a method for calculating
the optimal parameters.
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Basics in kernel density estimation

Kernel density estimation is a non-parametric method for estimating probability density
functions which are unknown. Assume that x1, x2, ..., xn are n sample points of
independent and identically distributed random variables. The probability density of
this distribution f (x) is unknown, and kernel density estimation can be used to estimate
it, defined as Eq.(1):

f̂h (x) =
1
n

n

∑
i=1

Kh (x − xi) , (1)

where, f̂h is the estimated density distribution function, K is the kernel density function,
and h is the bandwidth. The conditions that the kernel density function K needs to meet
are: non- negative, integral in the domain is 1, and it conforms to the probability density
property. The bandwidth h is a non-negative number used to control the smoothness of
the estimation in the domain.

In the task of finding traffic risk hotspots, the locations of different traffic events
on the map (each event has a different risk value) are given, and the requirement is to
estimate the probability density distribution of the risks on the whole map. This is a
problem on a two-dimensional plane and cannot simply use the one-dimensional and
density diffusion shown in Eq.(1). The general form of a kernel density estimator on a
2-D plane is given by Eq.(2):

λ (s) =
n

∑
i=1

1
πr2 k

(
dis

r

)
, (2)

where, λ (s) is the density at location s on the plane, r is the search radius (bandwidth)
of the KDE (only points within r are used to estimate λ (s), k is the weight of a point i
at distance dis to location s. The weight k is modeled as a kernel function of the ratio
between dis and bandwidth r. The further away event i occurs from location s, the less
impact event i has on location s. Common kernel functions include Gaussian function,
Quartic function, minimum variance function, etc.

Spatial-temporal network kernel density estimation

Basic principles of network kernel density estimation

The main target of the KDE method is to find the probability density throughout the 2-D
plane. However, in the road traffic system, the road links compose a network rather than
a plane. The traffic risk should be modeled as spreading along the road links instead of
evenly spreading on a 2-D plane. Therefore, network kernel density estimation (NKDE)
is proposed as an extension of the standard KDE method to estimate the probability
density distribution in a network space. The network kernel density estimator is given
by Eq.(3):

λ (s) =
n

∑
i=1

1
r

k
(

dis

r

)
, (3)
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where, the variables have the same meaning as in Eq.(2), and use Gaussian kernel
function, given by Eq.(4):

k(x) =
1√
2π

e−
x2
2 . (4)

Compared to standard 2-D KDE, NKDE assumes the risk spreads along the road
links. Thus, the density is calculated over a linear unit rather than an area unit. Besides,
the distance dis is calculated as the shortest distance in the network space between event
i and location s.

Establishment of road network data

To estimate the probability density distribution of events on the road network,
we need to determine the specific location where each event occurs. Therefore, it is
necessary to segment the route. Specifically, the road links are split into short segments
(which are termed lixels) (17), which are no longer than a preset length (e.g., 10 meters).
We assume risk density is uniformly distributed on each lixel. Thus, each lixel can be
treated as a node. On the other hand, the connection relationships can be treated as the
links that connect the lixels. In this way, we can build a lixel network from the original
road network. Risk density estimation will be calculated based on the lixel network.

FIGURE 1: Establishment of lixel network

Spatial-temporal network kernel density estimation (ST-NKDE)

However, as is well known, in many locations, the risk is only high during peak hours
in the morning and evening. If we can obtain the risk of each location at a specific
time, we can provide some warnings to car drivers when driving through a high-risk
location. In order to achieve this, we can choose to spread risk along the network and
time axis, which is so called spatial-temporal network kernel density estimation (ST-
NKDE). Meanwhile, the multi-variable KDE method is called generalized KDE (23).
Spatial-temporal spreading completely differs from sampling at different time periods
and then spreading separately in space. ST-NKDE can reveal the impact of events on
the timeline, such as event i occurring at time 12:00, which can contribute to the risk of
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location s at time 12:10.

For the ST-NKDE, the density function is given by Eq.(5):

λ (s) = Σn
i=1

1
rdrt

k(
dis

rd
)k(

tis

rt
), (5)

where, rd and rt represent bandwidths of different variables, and s is a 2-D vector with
the position in the network and the time. Besides, different kernel functions can be
chosen for different variables. As we have divided links into lixels, we divide the time
axis into time slices to make the problem computationally tractable. And then, we can
get the risk distribution for different time slices. A detailed analysis reveals that the
impact of the risk of traffic events occurring at location i on location s not only decays in
space but also in time.

To calculate the risk density, we take the following steps in Algorithm 1:

Algorithm 1: ST-NKDE calculation steps
Data: The road link data and the event data

1 Build up the lixel network;
2 Slice the time axis;
3 foreach event do
4 Determine the spatial-temporal position;
5 Add it’s risk level to the position;
6 end
7 foreach position in spatial-temporal domain do
8 if risk level of position ̸= 0 then
9 Find all it’s neighbor position within the given bandwidths;

10 foreach neighbor do
11 Calculate risk density by 1

rdrt
k( dis

rd
)k( tis

rt
)× risk level o f position ;

12 Add to it’s estimated risk density;
13 end
14 else
15 end

Result: Risk density on each spatial-temporal position

Derivation of optimum parameters

According to the operation steps in Algorithm 1, we can already determine which point
on the spatial-temporal map is a risk hotspot. However, due to the fact that the diffusion
bandwidths rd, rs are selected based on experience, we do not have sufficient reasons to
suggest that these locations do pose high traffic risks. Therefore, we need to provide a
method of selecting bandwidths rd, rt to make the results more convincing.

First, introduce a mathematical tool called Kullback-Leibler (KL) loss. KL loss
is used to measure the amount of information lost when using a distribution to
approximate the original distribution. The loss function in the case of discrete random
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variable is given by Eq.(6):

DKL(p||q) =
n

∑
i=1

p(xi)(logp(xi)− logq(xi)), (6)

where, p is the original distribution, and q is the distribution we predicted. The greater
the loss, the less close our predicted distribution is to the original distribution. Our
model defines λ0(s) as the potential original distribution, which is unknown to us, but
we suppose it exists. Let λ(s) represent the distribution we obtained from the above
section. Since the routes have been cut into lixels and the time axis has been sliced, it can
be assumed that each spatial-temporal position corresponds to a risk value, therefore it
can be considered that the risk density function λ(s) is discrete. Then, the loss in the
prediction is given by Eq.(7):

DKL = ΣFλ0 (s) (logλ0 (s)− logλ (s)) = ΣFλ0 (s)
(

log
λ0 (s)
λ (s)

)
. (7)

However, we cannot adopt Eq.(7) directly because there might be a few points in
field F with zero density, resulting in DKL to positive infinity. Here, some limitations
need to be imposed on this situation, such as the limit approaching positive infinity to
approaching 1. We can use function 1 − 1

x which approaches log(x) to a certain extent.
And then, the KL loss is given by Eq.(8):

DKL = ΣF λ0 (s)(1 − λ (s)
λ0 (s)

) = ΣF (λ0 (s)− λ(s)). (8)

To minimize DKL, given that λ0(s) is a certain distribution, it is equal to maximize
the sum of λ(s)in field F, given by Eq.(9):

E(λ) = ΣFλ (s). (9)

To intuitively understand why bandwidths can be selected by maximizing the sum,
the KDE method is to smoothly and accurately estimate unknown distributions. Initially,
the bandwidths are zero, and diffusion does not occur. All values are concentrated at a
few points, resulting in a small sum across the entire field. At this point, the estimated
distribution is not smooth. To make it smooth, we increase the bandwidths and spread
the value around. However, if bandwidths increase from zero, the sum first increases and
then decreases. Furthermore, the sum in the field will decrease to zero if the bandwidths
increase to infinity. Thus, suitable bandwidths are found to some extent while the sum
is maximum. We can get the optimal bandwidths by solving the optimization problem
in Eq.(10):

max ΣFλ(s)
s.t. rd∈ Qd,

rt∈ Qt,
(10)

where, λ(s) is the risk density function; rd is the distance bandwidth; rt is the time
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bandwidth; Qd and Qt are reasonable intervals for distance and time bandwidth,
respectively.

DATA DESCRIPTION

In this study, the traffic safety data were obtained from two distinct datasets. The first
dataset was gathered from onboard detectors installed in probe vehicles. These detectors
capture anonymized information about safety-related events such as emergency brakes,
slippery roads, and potholes, as depicted in Table 1. The second dataset was collected
from user-reported traffic events through Amap. This dataset contains both map data
and traffic event data, enabling us to analyze and pinpoint the actual hotspot locations
accurately, as depicted in Table 2. Using multiple data sources offers the advantage of
enhancing the calibration and verification of the hotspot detection model through data
complementarity. By combining these datasets, we can achieve a more comprehensive
and robust understanding of traffic safety patterns and effectively identify areas prone
to safety incidents.

TABLE 1: Data fields of the probe vehicle car data

Data label Data field Description

id of the data Vin Desensitized unique ID for each probe vehicle
Uuid Session ID for each data record

event data
Event type Type of event (e.g., brake, acceleration)
Event time Sample time of the event

Event value Detailed value for each event
(e.g., brake torque, acceleration value)

GPS data
Time Sample time for the GPS point

Longitude Longitude of the point
Latitude Latitude of the point

The probe vehicle data was collected from April 1, 2022, to March 31, 2023,
encompassing a span of one year. The user-reported traffic event data covers a more
extensive period, from January 2021 to March 2023, totaling 27 months. Both datasets
are concentrated in the Wangjing area in Beijing. The floating car data comprises event
and GPS data from various vehicles operating in this region. The dataset includes event
data with 6,714 vehicles and 26,595,248 event entries, GPS data with 7,149 vehicles
and 3,455,001 entries, each sampled independently at different intervals. In order to
aggregate data from events, we utilize the fuzzy matching technique. This technique
involves matching data points based on certain criteria, such as matching by vehicle
identification number (VIN) and a time window of ±5 seconds.

The user-reported data from the Amap navigation app encompasses traffic events
reported within the same area. To augment the floating car data, we collected all event
data within the same range as the floating car data. After removing any data that was
not relevant to the main road network, we obtained a total of 17,811 traffic event records.
All the data fields and their corresponding types are shown in Table 1 and 2.



Yao, Li, Hu, Hermann, Zhang, Li and Li 11

TABLE 2: Data fields of user-reported traffic event data

Data label Data field Description

map data Link id Unique id for each link in the map

Link shape
and coordinate

WKT format data of link’s shape and GPS coordinate,
containing the position of the two intersections

that the link connects

traffic event
data

Event id Unique id for each accident event

Event type
Type of the traffic event

(e.g., congestion, road closed,
traffic accident, serious accident)

Event start time Start time of the event
Event end time End time of the event

Longitude Longitude of the event
Latitude Latitude of the event

Event description Description of the traffic event in plain language
Link id ID of the link where the event happens

RESULTS

Network kernel density estimation

In the user-reported traffic event data, for different traffic events, risk levels are artificially
labeled based on the severity of the event (e.g., the risk level of congestion events is 1,
the risk level of general traffic accidents is 3, and the risk level of serious traffic accidents
is 5). In the probe vehicle data, risk levels are classified based on the magnitude of
braking torque or acceleration. We used a 10 meters long lixel to divide the route and
slice the time axis into 5-minute segments. After calculating the risk density on the map
according to Algorithm 1, we normalized the data and set the spatial-temporal location
density with the highest risk density throughout the day to 1.

Figure 2(a) show the risk value distributed on road links based on the proposed
ST-NKDE method. In the contrast in Figure 2, it can be seen that using kde on a plane
will mark many areas that are not along the route as risky, while using network kde can
more finely mark the specific locations of risks on the road network.
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FIGURE 2: The risk map in 8:00-8:05 using the user-reported traffic event dataset, (a) is
the result from network KDE; (b) is the result from plain KDE

Optimal parameter selection

To verify the effectiveness of the proposed kernel density estimation method, we
determine the optimal bandwidths for spatial and temporal dimension for the traffic
event dataset firstly. Figure 3(a) shows that when the distance bandwidth is 350m, the
objective function is the largest. In Figure 3(b), when the time bandwidth is 10 minutes,
the objective function is the largest, which can be regarded as the optimal parameters.

FIGURE 3: The optimal parameters from the user-reported traffic event dataset (a) is a
plan view of the variation of the objective function with bandwidths ; (b) is a section
view when distance bandwidth=350m



Yao, Li, Hu, Hermann, Zhang, Li and Li 13

FIGURE 4: Risk map of 8:00-8:05 based on traffic event data (a) is the result using
the optimal parameters rd = 350m,rt = 10min ; (b) is the result using the parameters
rd = 50m,rt = 10min ; (c) is the result using the optimal parameters rd = 800m,rt = 10min

From the comparison of Figure 4 , it can be seen that when the optimal parameters
are used in Figure 4(a), the changes in risk on the road network are smoother compared
to using smaller distance bandwidth in Figure 4(b), and there are rarely "point like"
high-risk areas. At the same time, many high-risk road sections marked with the optimal
parameters are not reflected when the optimal parameters are not used in Figure 4(c).
From the comparison, we can see the advantages of using the optimal parameters.

Dual dataset validation

Simple visualization cannot quantify the difference between the results obtained from
the two datasets. Therefore, we introduce Jensen Shannon divergence (JSD) (24), which
originates from Kullback Leibler divergence (KLD), to describe the differences between
two distributions. There are two existing distributions P and Q. In our example, we
assume that the P distribution is the risk distribution obtained from MB data, and the Q
distribution is the risk distribution obtained from gaode data. Using KL divergence to
measure the difference between two distributions is equal to one Cross entropy minus
one information entropy, given by Eq.(11) and Eq.(12):

KL(P| |Q) = Σp (x) log
p (x)
q (x)

, (11)

KL(Q| |P) = Σq (x) log
q (x)
p (x)

. (12)

However, due to the asymmetry of KL divergence, KL(P||Q) ̸= KL(Q||P), we
introduce symmetric JS divergence to describe the differences between two distributions
defined as Eq.(13):
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M =
1
2
(P + Q) , JSD(P| |Q) = JSD(Q| |P) = 1

2
KL(P| |M) +

1
2

KL(Q||M). (13)

Furthermore, we bring the KL divergence formula into the expansion as Eq.(14):

JSD(P| |Q) =
1
2

Σp (x) log
2p (x)

p (x) + q(x)
+

1
2

Σq (x) log
2q (x)

p (x) + q(x)
, (14)

where, p(x) and q(x) are normalized from the risk density λ(s) obtained from two
datasets. The value of JS divergence is between 0 and 1, and a smaller value indicates
that the two distributions are approximately similar.

We further use the similar method to find the optimal parameters for the probe
vehicle dataset. In Figure 5, it can be seen that the objective function achieves the peak
when the distance bandwidth is 450m and the time bandwidth is 10min, which are
similar to the optimal parameters for the traffic event dataset.

FIGURE 5: The optimal parameters from probe vehicle dataset (a) is a plan view of the
variation of the objective function with bandwidths ; (b) is a section view when distance
bandwidth=450m

We can choose the same time bandwidth for diffusion, and the selected bandwidth
is relatively optimal on both datasets so that we can compare the differences in risk
distribution between the two datasets within the same time period. In our two datasets,
it is obvious that 10 minutes is the optimal time bandwidth for both of them. For these
two datasets, we compare the differences in risk distribution between them during peak
hours in the morning and evening. The risk maps of the two datasets in morning and
evening peak hours are shown in Figure 6.
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FIGURE 6: (a) is the risk map in the morning peak hours from the user-reported
traffic event dataset using optimal parameters; (b) is the risk map in the morning peak
hours from the probe vehicle dataset using optimal parameters; (c) is the risk map
in the evening peak hours from the user-reported traffic event dataset using optimal
parameters; (d) is the risk map in the evening peak hours from the probe vehicle dataset
using optimal parameters
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Subsequently, the JSD can be calculated for the normalized risk distribution based
on the two datasets, respectively for the morning peak and evening peak:

JSD(Pm| |Qm) = 0.0939, (15)

JSD(Pe| |Qe) = 0.1009, (16)

where, Pm and Pe are the risk distributions obtained from MB dataset during the morning
and evening peak period separately, Qm and Qe are the risk distributions obtained from
the Amap dataset during the morning and evening peak period.

The results demonstrate that during the morning peak period, the divergence of JS
is smaller, which indicates that the risk distribution obtained from the two datasets is
more similar. By using the JSD method, we can obtain the similarity of risk maps from
two datasets within each time slice. The smaller the JSD value, the more similar the
two results are. In practical applications, a threshold can be set based on experience
to determine whether the results obtained within each time slice are trustworthy. At
the same time, it can also be used to explore the relationship between driver driving
behavior and traffic accidents.

DISCUSSION AND CONCLUSION

In this study, we proposed a novel approach for traffic risk hotspot detection in urban
areas by utilizing two complementary datasets: floating car data and user-reported traffic
event data. The results demonstrate the effectiveness and reliability of our method
in identifying high-risk areas on the road network. In this section, we discuss the
implications of our findings and provide a comprehensive conclusion.

One contribution of our research lies in the effective combination of user-
reported traffic incidents with probe vehicle data to produce a reliable traffic risk
hotspot identification model. The probe vehicle data offers valuable insights into
real-time vehicle trajectories and dynamics, enabling us to capture the underlying
patterns of risky behaviors. On the other hand, the user-reported traffic event
data provides complementary information and essential validation for our model,
ensuring its accuracy and reliability. By combining these two datasets, we enhance the
comprehensiveness and validity of our risk assessment.

Optimizing the accuracy of our model required careful consideration of the
parameter selection procedure. We developed a more accurate and trustworthy method
of risk assessment by using kernel density estimation to determine the ideal time
and distance bandwidths. The selected parameters (distance bandwidth and time
bandwidth) proved to be effective in capturing risk hotspots and providing a smooth
risk distribution over the road network.

The comparison of risk maps during morning and evening peak hours further
validated the consistency and effectiveness of our approach. The small Jensen Shannon
divergence (JSD) values further indicated that the risk distributions obtained from
the two datasets were relatively similar, emphasizing the robustness of our model.
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Notably, the higher similarity during the morning peak period may be attributed to
more predictable and regular traffic patterns during that time.

Our research may have important implications for urban traffic safety measures and
city planning. By identifying traffic risk hotspots, city authorities can prioritize safety
interventions and optimize traffic management strategies. The proactive identification
of high-risk areas can lead to the implementation of targeted safety measures, such as
traffic calming measures, improved signals, or enhanced enforcement in those specific
locations.

However, some limitations should be acknowledged. Firstly, the datasets used
in this study were localized in the Wangjing area of Beijing, which may limit the
generalizability of our findings to other urban areas. Extending the study to diverse
urban contexts can provide more comprehensive insights into traffic risk patterns.
Additionally, the accuracy of user-reported traffic event data may be influenced by
reporting bias and incomplete coverage, which can impact the reliability of the validation
process. Future research could focus on refining the data collection process and
exploring alternative validation methods.

In conclusion, our study presents an effective and reliable method for traffic risk
hotspot detection in urban areas. By leveraging probe vehicle data and user-reported
traffic events, we achieve a comprehensive and validated traffic risk assessment. The
optimized parameter selection process enhances the accuracy of our model, while the
JSD analysis confirms the consistency of risk distributions obtained from both datasets.
This research contributes to the advancement of urban traffic safety measures and has
significant implications for urban planning and traffic management strategies. Moving
forward, further research and validation in diverse urban settings can expand the
scope and applicability of our approach, leading to safer and more efficient urban
transportation systems.
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