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Abstract—Ultrasound tomography (UST) is an emerging imag-
ing modality for prostate cancer detection, often requiring a dual-
arm robotic system. Accurate calibration of the robotic system
is essential for successful UST. In this paper, we propose a novel
method, termed Boost Calibration, which performs the calibra-
tion using only 2D data. Additionally, we introduce a robust
and efficient error estimation method in simulation. Simulation
experiments demonstrate the effectiveness and robustness of the
proposed method.

Index Terms—Calibration, Dual-arm, Ultrasound tomography,
Robotic ultrasound

I. INTRODUCTION

In 2022, prostate cancer was the second most commonly
diagnosed cancer and the fifth leading cause of cancer death
among men worldwide, with an estimated 1.5 million new
cases and 397,000 deaths [1]. Early detection of aggressive
prostate cancer is crucial since 5-year survival rate drops from
nearly 100% in localized or regional stages to about 34% once
the disease metastasizes [2]. Although ultrasound imaging
is widely accessible, cost-effective, and capable of real-time
visualization, conventional ultrasound techniques have limited
sensitivity and specificity in detecting prostate cancer [3].
Ultrasound tomography (UST) reconstructs 3D tissue structure
and provides quantitative parameters (e.g., speed of sound)
[4], which enables quantification of mechanical properties of
biological tissues. Pilot studies have shown that UST has com-
parable prostate cancer detection accuracy to multiparametric
magnetic resonance imaging [10]-[12].

Previously we introduced a dual robotic arm UST imaging
setup to accommodate prostate anatomy [8], [9], where one
arm holds a transrectal probe and the other holds an abdominal
probe to achieve aligned transmit-receive at different view
angles, as shown in Fig. 1-2.

To accurately track ultrasound image, it is important to
obtain the fixed transformation between ultrasound beam and
the robot end effector, which is known as “ultrasound calibra-
tion”; and the transformation between the base frames of the
dual robotic arms. This dual-arm calibration process involves
three unknown rigid transformations X,Y,Z € SFE(3), as
illustrated in Fig. 1. A standard approach is sequentially
solving the BXp problem [5] for each arm and then combining
them together.
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Fig. 2: Clinical setup

However, in practice, calibrating both arms independently
and directly combining the transformations often results in
misalignment errors larger than the image resolution cell
(around 0.75 mm assuming 1 MHz central frequency), leading
to artifacts in UST images.

To address this issue, we propose a novel method called
”Boost Calibration” to combine these transformations by solv-
ing the nonlinear equation AXt; = Y (CZty. Furthermore,
a fast simulation method is developed to estimate the upper
bound of error under high-dimensional configurations in dual
arms system. And note that unlike the AX B = Y CZ problem
[6] requiring two stereo cameras for 3D data, the proposed
method works with only 2D inputs, like standard RGB cameras
or ultrasound transducers.

II. METHODOLOGY
A. Calibration Algorithm

Boost Calibration, as the name suggests, performs two
stages of calibration. The first stage follows the standard
approach described above, in which each robotic arm is in-
dividually calibrated using B X p solving framework to obtain
the ultrasound calibration matrices X and Z. In practice, this
step often does not require additional effort, as the ultrasound
calibrations for each arm may already be available when the
dual-arm system is assembled. And then, both arms simulta-
neously observe several common target points, from which the
transformation between the two robot base frames, denoted as
Y, is estimated. But this method yields large misalignment
errors.

Our approach is to simultaneously estimate the three un-
known transformations, while leveraging the prior calibration
results as initial estimates. This strategy aims to enable more
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Fig. 3: The process of boost calibration method
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Fig. 4: Kinematic model of the dual-arm ultrasound calibration

accurate and efficient calibration when assembling the dual-
arm system. Based on this idea, we proceed to the second
stage. The whole process of the method can be seen in Fig. 3.

Assume the three initial estimates X,Y and Z, and as-
sume that there exists a small transformation between these
estimates and the true calibration matrices, which ensures
consistency within the entire dual-arm system:

AX(AX)t, = Y(AY)CZ(AZ)t, ()

where t; = [t1,1],fo = [t2,1] € R? are the homogeneous
representation of the point target’s coordinate in the abdominal
and transrectal ultrasound frames, respectively. Due to the
use of two-dimensional ultrasound imaging, the translational
component in the out-of-plane (elevational) direction is always
zero. All other terms in the equation are rigid transformations
in SE(3) and can be homogeneously represented by a 4 x 4
matrix. Using the exponential coordinates for rotation Rg [7],
the transformation X can be expressed as:
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where ay € R3 with |jag| = 1 is the unit rotation axis,

O € R is the rotation angle, and pg € R is the translation
vector. The operator (-)" denotes the skew-symmetric matrix
associated with cross product.

Assuming small errors between X and the potential true
transformation X in the rotation axis, angle, and translation
(denoted by Aay € R3, A0x € R, Apx € R3, respectively),

we can derive the small transformation A X, such that X (AX)
is a first order approximation to X,

I+ (ax)" Afx + (Aax) 05 R Apx
1

AX = 0

)
where we assume Aax L ax to ensure the rotation axis of X,
Aax + ax remains unit up to the first order approximation.
Using (2) and (3), the small transformations AY, AZ can
be expressed in a similar form. Substituting these into the
dual-arm system in (1), and defining transformation

U:=Y 14X, W:=0CZ,

we obtain the following linearized system with 21 unknown
parameters and 3 constraints:

AiAax + AsAay + AsAaz+
Bi1AOx + ByAby + BsAfz+ @)
Ci1Apx + CoApy + C3Apz = D,

subject to Aax Lag, Aay Lay, Aaz Llaz,

where,
Ay = —Ry(t1)"0x, Ay = (Rwtz + pw)" by,
As = Ry (t2)"0z, Bi = Ry(ax) t,
By = —(ay)(Rwt2 +pw), Bs=—Rw(az) ts,
Cy =RyR', Cy=-R;', C3=-RwR,",
D = —Ryt1 — pu + Rwts + pw-

Given a fixed target point, we change the configurations of
the robot arm: specifically, poses A, C' and ultrasound obser-
vations t1,to. Each configuration yields a set of parameters
in (4). By stacking these parameter matrices across multiple
configurations, we formulate a linear constrained least squares
problem, which can be solved by Lagrange multiplier, and
obtain the gap between the initial estimates X,Y, Z and the
potential true transformations X, Y, Z.

It should be noted the vector Ryyts + pywy is just the target
point coordinates in world frame under the initial estimated
transformations. As a result, varying the robot configurations
leads to similar values for this vector. Moreover, operator (-)"
produces a singular skew-symmetric matrix. Consequently,
stacking the parameter matrices across all configurations yields
a large matrix with a high condition number, particularly due
to the columns stacked by As. This makes the solution of
Aay to be highly sensitive to noise. To mitigate this issue, it
is necessary to calibrate the point target at multiple positions.

B. Error Estimation

It is important to evaluate the effectiveness of the boost
calibration algorithm. A natural approach is to measure the de-
viation between the desired target point and the actual reached
point. To ensure robust calibration across all configurations,
we focus on the worst-case error.

One configuration of a robotic arm can be interpreted as a
combination of the pose of the robot arm (A or C) and the
ultrasound observation (¢; or t3). In practice, the target point



lies within a constrained region, allowing us to characterize a
configuration by two components: the coordinates of the target
point in the world frame, and the pose of the ultrasound frame
relative to the target point frame.

As illustrated in Fig. 4, we take robot 1 as an example. Let T’
denotes the transformation (actually a translation) from world
frame (i.e., Robot 1 base) to target point frame, and denote
Pr = [pr, 1] as the homogeneous coordinates in world frame.
Let 7} denote the transformation from ultrasound 1 frame
towards target point frame. By definition, the translation com-
ponent of T is py, = t1. Given 17 and 7', we can calculate
the robot pose A can be calculated by 77, *(XAX)~" and
the actual reached point is given by AXt; in world frame. A
similar argument applies to Robot 2 and we get the calibration
error on both sides:

Ey = ||TTy {(XAX) 7' Xt — pr||, 5)
By =|[Y(YAY)'TTy Y(ZAZ) " Zt, — pr||. (6)

The above describes the calibration error under a single
configuration, but our goal is to evaluate the worst-case
calibration error. The configuration is parameterized by 8
variables: transformation 7, parameterized by 3 variables;
transformation 77, which requires 5 variables since we use
2D ultrasound probe. Directly sampling over all 8 variables
results in high computational cost. But fortunately, since the
rotation matrices preserve the Euclidean norm of vectors, we
can derive the following upper bound on calibration error:

By < max 1(@x — Dt :== EU, (7
By < H§§X||(Qz—f)f2||+H;§X||(QY—I)15T|| = EUs, (8)

where QX = (XAX)_lX, Qy = Y(YAY)_l, QZ =
(ZAZ)='Z. By applying (7) and (8), we observe that it
suffices to sample only ¢; (2 variables) for Robot 1; and
independently sample to (2 variables) and pp (3 variables)
for Robot 2. This significantly reduces the computational cost
compared to sampling the full 8-dimensional configuration
space. Moreover, it is notable that the upper bound on the
calibration error of the dual-arm robotic system only depends
on the ultrasound observation t1,ts and the position of the
target point in the world frame pr.

C. Validation

A set of ground truth transformations (i.e., X,Y, Z ) is first
provided. The validation process is outlined in the following
algorithm.

Algorithm 1 Validation process for boost calibration

for : =1 to N, do
Generate perturbed transformations X,Y, Z
for j =1 to N; do
Sample a target point
Select IV, observing ultrasound poses
(Add noise to t1,ts for each pose)
Calibrate via (4)
| Calculate error bound via (7)—(8)

In the algorithm, N, denotes the number of experiments
conducted. For each experiment, we generate perturbed trans-
formations served as initial estimates, apply the boost cali-
bration method, and estimate the resulting calibration error.
Several points are worth noting:

o Configuration Selection: Each experiment selects sev-
eral configurations, defined by the target point in the
world frame and ultrasound poses relative to it, which
is equivalent to specifying the robot arm poses and the
ultrasound observations.

« Ultrasound inaccuracy modeling: Due to the 2D nature
of the probe and signal distortion, ultrasound observations
are less precise. To simulate this and test the robustness
of boost calibration, noise can be added to ¢; and ¢5.

IIT. RESULTS

We randomly add 1%,0.5° and 1% perturbations to the
rotation axis, angle, and translation, respectively. For each
case, we conduct N, = 100 experiments. The simulation
results are presented in Fig. 5.

From Fig. 5, we observe that as the number of target points
N; increases, the calibration results become more stable,
which is consistent with the discussion in Section II-A. With 5
distinct target points and 100 poses (essentially 10 poses per
arm) for each point, the calibration achieves high precision,
with errors for both arms around 0.25 mm, well below the
ultrasound image resolution of 0.75 mm.

After considering ultrasound inaccuracy by adding noise
Unif(—1,1) mm to ¢; and to, the method still achieves
accurate result as ¢, N,, increase, as shown in Fig. 5b. With
7 distinct target points and 400 poses (essentially 20 poses
per arm) for each point, the upper bounds on calibration
error reach approximately 0.3 mm,which remains below the
ultrasound image resolution of 0.75 mm. In Fig. 6, we present
experiments under different noise levels. The results show that
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Fig. 5: Simulation-based validation of the boost calibration
method. (a) Without ultrasound noise; (b) Unif(-1,1) mm
ultrasound noise added to %1, t5.
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TABLE I: Absolute errors between two ultrasound frames
before and after boost calibration, for A ( N, = 9,N; =
3)and B ( N, = 100, Ny = 7 ) under ultrasound noise
Unif( —1,1 ) mm, averaged over 100 experiments with the
transrectal frame y-axis rotated from —45° to 45°.

Pose component First stage M
Roll (degree) 1.0 2.8e-2  2.5e-3
Pitch (degree) 0.4 3.3e-2 2.le-2
Yaw (degree) 1.1 1.2e-2  4.9e-3
Translation distance (mm) 3.5 1.3e-2  5.3e-3

with N; = 6 and N, = 50, the error upper bound remains
below 0.75 mm when the noise follows Unif(—0.75,0.75)
mm. Furthermore, with Ny = 7 and N, = 100, the method
can tolerate noise up to Unif(—1.25, 1.25) mm. This illustrates
both the effectiveness and robustness of the boost calibration
method.

We then conduct a simulation similar to that in real clinical
use. The transrectal probe is fixed, while the abdominal probe
is positioned just ahead of the transrectal probe, with the z-
axis oriented in the opposite direction and the yz-plane aligned
(since we are using 2D probes). The distance between the
origins of the two ultrasound frames is set to 10 cm. We
analyze the actual translation between these two ultrasound
frames against the ground truth described above, before and
after boost calibration. As shown in Tab. I, the “boost step”
significantly increase the precision. Note that the variance
across 100 rotation experiments is extremely small and is
therefore omitted.

IV. DISCUSSION AND CONCLUSION

In summary, we propose a novel boost calibration method
for dual-arm robotic systems using ultrasound, along with an
efficient approach to estimate calibration error. Simulations
show high accuracy despite ultrasound inaccuracy: without
ultrasound noise, the upper bound of the calibration error is
around 0.25 mm; with Unif(-1,1) mm noise in ultrasound
observation, it reaches 0.3 mm. Assuming the ultrasound

transducer operates at 1 MHz, its image resolution would be
0.75 mm, hence, the maximum error is well below half of
the image resolution. Simulations further show that with 6
target points and 50 robot arm poses, the method tolerates
Unif(—0.75,0.75) mm noise while keeping the error bound
below the resolution; with 7 target points and 100 poses, it
tolerates Unif(—1.25,1.25) mm noise.

A world frame must first be defined in the calibration
process. In our setup, it was initially attached to the left robot
arm holding the transrectal probe, which increased errors for
the other arm due to the base-to-base transformation. Since
the transrectal probe moves only within a limited range, it is
more appropriate to attach the world frame to its robot base.
The abdominal probe allows for more varied poses, enabling
a more accurate base-to-base transformation.

This approach uses only 2D data, making it suitable for
standard RGB cameras and ultrasound transducers. It can also
be applied when assembling a dual-arm system from two
pre-calibrated arms, or for recalibration after long-term use,
particularly in clinical settings with collision risks. However,
a limitation is the complexity of the calibration process, as
it requires multiple target point positions and numerous robot
poses for each position, even though this is almost inevitable
when high precision in ultrasound transducer localization is
desired. Another limitation is that we do not account for
the poses that the robot arm cannot reach due to spatial
constraints and clinical conditions. In practice, this restriction
may actually reduce the calibration precision.

Our future work includes testing the algorithm on real robots
and performing ultrasound tomography for prostate cancer
detection.
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